科技前沿一张图专利标准技术文献
  • 常见的垃圾渗滤液处理工艺

    近年来随着人们的生活水平提高,许多城镇都建了很多新的垃圾填埋场。同时也带来了关于垃圾渗滤液的处理难题。因为其不同于一般城市污水的特...快速预览

    垃圾填埋场垃圾渗滤液环保

    浏览量 31 中国污水处理网 | 14天前

    常见的垃圾渗滤液处理工艺

    垃圾填埋场垃圾渗滤液环保

    中国污水处理网 | 14天前

    近年来随着人们的生活水平提高,许多城镇都建了很多新的垃圾填埋场。同时也带来了关于垃圾渗滤液的处理难题。因为其不同于一般城市污水的特点,垃圾渗滤液BOD5和COD浓度高、金属含量较高、水质水量变化大、氨氮的含量较高,微生物营养元素比例失调等。


    在渗滤液的处理方法中,将渗滤液与城市污水合并处理是最简便的方法。但是填埋场通常远离城镇,因此其渗滤液与城市污水合并处理有一定的具体困难,往往不得不自己单独处理。


    垃圾渗滤液的常见处理工艺主要有以下三大类:


    一、生物处理+膜处理工艺


    (1)工艺流程:预处理—微生物处理—膜吸附过滤。


    (2)典型工艺:中温厌氧系统 +MBR+RO。


    (3)工艺内容:渗滤液通过调节池流入到中温厌氧池,经大分子有机污染物降解后进入缺氧段 MBR 反映器中,与回流水混合进入好氧段 MBR  进行曝气,去除渗滤液中的 TN,好氧池出水进入 MBR 分离器,将分离的污泥浓液回流至 MBR 缺氧段, MBR  出水进入反渗透系统,渗滤液经反渗透处理后实现达标排放。



    二、全膜吸附过滤处理工艺


    (1)工艺流程:预处理—两级反渗透膜过滤。


    (2)典型工艺:两级 DTRO 反渗透处理工艺。


    (3)工艺描述:垃圾填埋场渗滤液原液经由调节池进入到高压泵后,通过循环高压泵进入到一级 DTRO 反渗透膜过滤,出水后进入到二级 DTRO  反渗透系统,经两级反渗透过滤后出水达标排放,循环进入到系统进行处理。一级浓液回灌垃圾填埋区进行集中处理,二级浓液回流到总进水口,系统总产水率在 60%  左右。



    三、低耗蒸发 + 离子交换处理工艺


    (1)工艺流程:预过滤—蒸汽压缩分离水—吸收气体氨。


    (2)典型工艺:MVC 蒸发 +DI 离子交换。


    (3)工艺内容:填埋场垃圾渗滤液经调节池过滤器在线反冲过滤,除去渗滤液中的 SS、纤维,提高去除效率,再经 MVC  压缩蒸发原理,将渗滤液中的污染物与水分离,实现水质净化效果。通过特种树脂去除蒸馏水中的氨,达到水质的全面达标排放。在 MVC 蒸发过程中排出挥发性气体氨,利用  DI 系统吸收渗滤液中剩余盐酸气体。


    目前,三种工艺在渗滤液处理中的应用较为广泛,在实际应用中有着各自的优点和不足。主要表现在:


    (1)生物处理 +  膜深度处理工艺:其工艺原理为生化反应和物理处理工艺,由于生化系统运行过程中受到的影响因素较多,需要各单元之间密切协调配合,该工艺自控程度较高,技术风险较低,但对“老龄化”渗滤液处理难度较大。因此,总体来看该工艺投资较低,主体设备多为国产,污染物总量能够达到很好削减效果,管理较便捷。该工艺的不足之处在于出水率较低,增加了回灌的难度;生物处理效果不稳定,生物菌种需要培养、驯化,增加了运行成本;对“老龄化”渗液的生化效果极差;运行不能长时间停运,需要连续运行。


    (2)两级 DTRO  反渗透处理工艺:该工艺具有操作简便,能够间歇式运行,自动程度高,易于维护管理;膜产品类型多。其不足之处在于对渗滤液原水水质较为敏感,出水率容易受到  SS、电导率以及温度等因素的影响;两级反渗透处理工艺中,前级预处理缺乏,容易导致反渗透膜堵塞,更换频率高,增加处理成本;出水率低(正常状态下为  55%-70%),回灌难度大,增加运行成本。


    (3) MVC 蒸发 +DI 离子交换处理工艺。该工艺的优势在于受渗滤液的原始水质影响较小,出水率高,通常以可以达到90%,能够做到间歇式运行,自控程度较高、维护简单;浓液量较少。不足之处是蒸发工艺实际应用较为复杂,电耗等能耗较高,维护成本较大;设备材质要求较高,尤其是要具有较强的耐强酸、强碱腐蚀性;运行设备噪声较大;后期蒸发罐清洗频次较大,药剂成本高。


    我国真正能满足卫生填埋标准的填埋场并不多,许多填埋场因为投资所限无法按设计要求建造能达到环境保护要求的渗滤液收集系统。因此,宜发展投资省,效果好的渗滤液处理技术。对垃圾渗滤液的处理,我国尚处于研究探索阶段,为了建设标准化的城市垃圾卫生填埋场,对其渗滤液的处理应作更深入的研究。

    浏览量 31 收起
  • 试析水泥窑协同处置危险废物的处理

    本文简述了水泥窑协同处置危险废物技术特点,以及水泥窑协同处置危险废物的处理技术,旨在与广大同行共同探讨学习。快速预览

    试析水泥窑协同处置危险废物的处理

    水泥窑协同处置危险废物水泥窑设施环保

    《基层建设》 | 1月前

    摘要:文章主要从国内外研究及应用进展出发,分别简述了水泥窑协同处置危险废物技术特点,以及水泥窑协同处置危险废物的处理技术,旨在与广大同行共同探讨学习。


    关键词:水泥窑;协同处置;危险废物;处理


    一、国内外研究及应用进展


    采用水洗预处理能够有效去除垃圾焚烧飞灰中的氯离子、碱金属,也可以有效解决飞灰对水泥窑可能带来的结皮堵塞、腐蚀和产品质量问题。掺烧15%含砷污泥熟料的主要矿物相没有太大变化,其抗折和抗压实验结果与参照对比的水泥相似,也符合国家标准。水泥生料对Pb、Cd、As的吸附冷凝量随时间的增加而增加,随温度的升高而降低。水泥窑煅烧对As、Pb、Zn的化学稳定效果优于水泥固化稳定化,对于Cr则是水泥固化稳定化的化学稳定效果更好。多环芳烃类(PAHs)污染土经过600℃高温处理后,除少量菲残留外,其余有机物基本无残留。协同处置持久性有机污染物(POPs)污染土壤的试验表明SO 2、NO x、HCl、Hg、As、Ni、Pb、粉尘、二噁英的排放量均低于相应大气污染物排放要求限制,水泥熟料的化学成分满足相关规定,熟料产品质量达到相关标准。


    二、水泥窑协同处置危险废物技术特点


    水泥窑协同处置危险废物具有环境无害化、处置危险废物能力强等特点,利用现有的水泥窑设施开展水泥窑协同处置危险废物,有其独特优势:


    1.无害化处置效果好


    停留时间长,水泥窑燃烧过程充分,焚烧状态易于稳定,有机物彻底分解,重金属有效固熔,有效抑制二噁英的形成、降低有毒有害物质的排放,环保优势明显。


    2.资源化利用程度高


    废物可部分替代水泥生产使用的原燃料;可实现固体废弃物的资源化与再生化处理,生产过程协同资源化处理,成本较低,水泥窑协同处置单位投资额仅为新建/扩建专业焚烧炉的1/3左右,运营成本也显著低于专业焚烧炉,成本优势显著。


    3.焚烧空间大


    大空间的水泥窑焚烧的应用充分保障了大量危险废物得到有效处置,还可以使危险废物在焚烧过程中始终保持稳定;焚烧温度高,一些难以分解的稳定有机物也会得到完全的分解处置,高温条件下,能使危险废物中的重金属固化并稳定留存于矿物燃料中。


    三、水泥窑协同处置危险废物的处理技术


    1.综合利用(资源化)


    理论上,综合利用技术可以分为能源替代技术、物理化学处理技术、物质分离与回收技术、材料回收和土地还原技术等。目前,国内危险废物的综合利用主要集中于金属、废有机溶剂、废酸废碱、废油、电子废物等方面的回收利用,主要使用的是物理化学处理技术以及物质分离与回收技术,典型的有清洗、干燥、破碎、分选、中和、絮凝沉淀、氧化还原、结晶、烧结、热解、蒸馏、吸附、生物处理、磁选/电选等工艺手段。以废溶剂和废矿物油为例,废溶剂的回收利用主要包括吸附、吸收、冷凝、分离和提纯等工艺;废矿物油的再生则分为3类:净化(沉降、离心、过滤和絮凝等工艺),精制(化学精制和吸附精制等工艺),炼制(以蒸馏工艺为主)。


    2.预处理


    危险废物具有腐蚀性、毒性、易燃性、反应性或者感染性等特性,预处理即通过物理、化学、生物、固化等技术对不可综合利用的危险废物进行无害化和减量化处置。


    (1)生物处理


    生物处理是利用微生物、动物和植物的新陈代谢对危险废物中含有的有机物质进行降解处理,主要局限于处理有机废液和废水。相比较于其他预处理方法,生物处理在对危险废物降解处理的同时,还能一定程度上实现资源化回收,主要体现在产沼气、产肥料等方面。生物处理的缺点在于处理周期长,稳定性差,处理过程中有污染物扩散到环境土壤和水体中的风险,需要做好过程的详细记录和控制管理。


    (2)固态半固态危险废物协同处置的预处理


    ①挥发性危险废物协同处置的预处理


    挥发性固态、半固态危险废物经密闭罐车输送至密闭式储存区,计量后(若粒径较大不满足焚烧要求则先进行破碎、粉碎)通过密闭输送设备送入水泥窑窑尾,经高温焚烧处理去除有毒污染物,有用成分最终成为水泥熟料。


    ②非挥发性危险废物协同处置的预处理


    非挥发性危险废物根据其性质又可分为3类:可替代水泥产生线燃料类、可替代水泥生产线原料类以及不可替代原燃料类。可替代水泥产生线燃料类的危险废物首先经粉碎,然后通过卸料装置提升和计量设备计量后经密闭输送设备送入水泥窑窑头燃烧。可替代原料类的危险废物通过卸料装置和计量设备后经密闭输送设备送入生料磨,粉磨后与其他生料一起送入窑内焚烧。为满足存储及工艺要求,又不对水泥生产产生明显不利影响,入磨粉磨的非挥发性可替代原料类危险废物要求含水率需低于一定限度(大约40%),否则需加入适宜的低含水率固态危险废物进行调和,调和到满足要求的含水率后再进生料磨粉磨。不可替代原燃料类的危险废物首先经破碎、粉碎,然后加入其它适宜的同类危险废物或者液态危险废物,以调整其水分含量和可塑性,调和后的危险废物形成含水量约为60%的膏状混合物,计量后通过密封输送设备送至水泥窑窑尾进行高温焚烧。


    (3)废有机溶剂、废矿物油预处理


    废有机溶剂、废矿物油热值较高、含水率低,入窑前,需对其性质进行分析,主要包括分析粘度、低位热值、pH值、有机成分等性质。对于废有机溶剂、废矿物油液体废物的输送,通过耐腐蚀耐有机溶剂的密封容器和输送泵的输送方式从储存库至预处理设施,通常采用的预处理方式为搅拌、混合、配伍和中和,以保证液态废物中的污染物浓度始终处于适当的范围内。废有机溶剂、废矿物油通常不含有对水泥生产有害的元素成分,可用作水泥窑协同处置替代燃料,这些替代燃料一般不会对分解炉的气流的停留时间有额外的要求,采用正常的操作方式能满足废弃物的处置利用。废矿物油和有机废液作为替代燃料,可从主燃烧器投加,在投加时,需要控制通过泵力输送投加的液态废物不应含有沉淀物,避免燃烧器喷嘴堵塞。


    (4)液态危险废物协同处置的预处理


    危险废物中的废酸、废碱、废溶剂、废催化剂、废吸收剂以及废油等均属于液态危险废物,根据国内已有水泥窑协同处置危险废物的实际运行案例以及国内外研究结果,水泥窑协同处置液态危险废物时一般包括以下几种预处理方法:


    ①直接替代部分燃料。对于废有机溶剂、废油等热值较高、含水率低,不含对水泥生产有害的成分时,一般采取过滤后直接泵入水泥窑窑头助燃替代部分水泥生产线所需燃料的方式。对于该类液态危险废物,仅需分析其性质,计量后采取过滤的预处理方法即可。


    ②几种液态危险废物混合后与固态、半固态危险废物搅拌呈膏状再送入水泥窑。在确保没有不良反应及其他废物产生的情况下对几种液态危险废物进行混合、搅拌,使最终调配后的废液除了具有适量的热值外,废液酸碱度适宜,调配后的废液再与固态、半固态危险废物进行搅拌混合调质(在确保没有不良反应产生的情况下),最后送入水泥窑进行焚烧处置。


    结语


    总之,水泥窑协同处置危险废物能够有效解决危险废物的处理问题,达到可回收利用的目的。具体在处置过程中,首先对预处置的危险废物进行分类管理,然后进行预处理,如压缩、分割、粉碎处理,并将这些预处理好的危险废物送入高温炉内进行煅烧,最后将煅烧后的废物进行回收利用或者当作其他工业生产原料加以利用。


    参考文献:

    【1】张闻杰.利用新型干法水泥窑协同处置危险固体废物技术[J].南方农机,2018(12)

    【2】黎力.利用水泥窑协同处置危险废物分析探讨[J].建筑工程技术与设计,2018(9)

    【3】腾玲玲,余华林.水泥窑协同处置危险废物的研究分析[J].广州化工,2017(3)

    【4】王昕,刘晨,颜碧兰等.国内外水泥窑协同处置城市固体废弃物现状及应用[J].硅酸盐通报,2014(8)

    浏览量 63 收起
  • 燃煤电厂脱硫废水零排放常规处理方法及案例介绍

    目前燃煤电厂烟气治理行业已经进入运维时代,脱硫废水作为烟气脱硫治理的副产物得到普遍关注。脱硫废水具有高含盐量、高腐蚀性等特征,20...快速预览

    燃煤电厂脱硫废水零排放常规处理方法及案例介绍

    脱硫废水零排放废水零排放技术环保

    北极星环保网 | 1月前

    目前燃煤电厂烟气治理行业已经进入运维时代,脱硫废水作为烟气脱硫治理的副产物得到普遍关注。脱硫废水具有高含盐量、高腐蚀性等特征,2006年,国家发改委颁布《火电厂石灰石-石膏湿法脱硫废水水质控制标准(DL/T997-2006)》,标准中要求脱硫废水必须经适当处理达标后才能外排。“水十条”的出台,促使脱硫废水深度处理成为电力行业面临的急迫问题,推动脱硫废水排放标准向“近零排放”方向发展。


    图片1.jpg


    脱硫废水欲达到零排放,要经过预处理单元,浓缩减量单元、末端零排放处理(固化)单元三个处理过程。北极星水处理网对现有的脱硫废水零排放技术进行了归纳,帮助分类脱硫废水零排放技术的对比和选择。


    图片2.png

    脱硫废水处理流程


    1、预处理单元


    预处理单元是对废水进行初步的简单处理,去除水中的重金属离子,悬浮物等的同时调节水的pH值、软化水质,使水初步达到后续处理的基本要求。常见的预处理方法有传统的化学沉淀(三联箱)法和以北京华德创业HDCY脱硫废水处理装置为代表的一体化处理法。


    化学沉淀法因为要用到中和、反应、絮凝三个步骤,并且都需要用到较大的容器,所以“化学沉淀法”也叫做“三联箱”化学沉淀法。处理过程如下图:


    图片3.png


    化学沉淀法(三联箱工艺)应用较为广泛,技术相对成熟,化学沉淀法不利于对重金属离子浓度较小的废水处理工作,会导致滤膜堵塞的问题。且传统“三联箱”系统一般适宜的入料悬浮物(SS)含量为2%以下,需要投加5种以上的药剂,具有较为复杂的药剂制度,后续污泥脱水需要配一整套脱水系统。


    华德创业作为深耕脱硫废水治理的代表性企业,坚持自主创新,研发出HDCY一体化脱硫废水处理系统。其处理负荷SS含量最高可以达到15%左右,污泥浓缩倍率高,排泥浓度可达到25%以上,整个运行过程仅需添加一种固体药剂,出水水质优异,且污泥可以直接给入真空皮带机进行脱水外运,无需单独设置污泥脱水系统。


    针对某电厂废水系统,运行人员分别取样:1.“HDCY脱硫废水一体化处理装置”溢流出水;2.原废水系统(三联箱处理工艺),澄清池溢流出水;3.废水旋流器溢流出水,即废水系统原水。针对上述三种水样,送至第三方检测单位进行相关水质分析测试结果对比如下:




    从水质测试对比表中可以看出:


    针对悬浮物一项,HDCY一体化脱硫废水处理系统污染物的去除效率要明显高于原系统(即“三联箱”+“澄清器”系统),其他污染物指标也优于三联系处理系统。


    2、浓缩减量单元


    浓缩减量单元将废水高倍浓缩,为最后的末端处理单元提供原料,同时也可以产出大量清水。预处理单元和浓缩减量单元可以相互配合,自由搭配。浓缩减量单元是脱硫废水处理过程中的核心单位,常见的浓缩方法根据废水的含盐量可以分为热法和膜法。


    热法包括多效蒸发、机械式蒸汽再压缩、蒸汽热力压缩器等,主要原理是根据热量交换实现水的气体和液体的相互转化。膜法包含有超滤、纳滤、渗透、振动膜等。膜法的材料多种多样,可以根据现场情况进行搭配,常见的有三种电渗析-反渗透、多级反渗透、反渗透-正渗透。


    3、末端零排放处理(尾水固化)单元


    经过浓缩后的废水体积大大缩小,在固化单元废水浓缩液的污染物进过处理变成固态污泥,其中会回收少量清水。由于浓缩废水污染物浓度高,组成成分复杂,所以尾水固化单元是整个脱硫废水处理过程中的技术难点,尾水固化方法常见有蒸发结晶、烟道蒸发和喷雾干燥三种。原理是通过高温蒸发出水汽,或者将废水进行技术性喷雾处理,最后将无法汽化的固体排出。烟道蒸发处理法最大程度的接近脱硫废水零排放的技术要求。


    以上三个处理单元常见的流程工艺有三种:


    (1)预处理→膜浓缩→蒸发结晶工艺:




    (2)预处理→膜浓缩→烟道蒸发工艺:




    (3)低温闪蒸→浓液干燥工艺:




    结语


    在风电、水电、核电多元化发展的今天,火力发电仍是我国主要的电力生产工艺,烟气脱硫后产生的脱硫废水也是火力发电所产生的最大污染体。脱硫废水处理工艺的日渐成熟有助于火电行业逐渐摆脱污染物难处理的困境。努力实现脱硫废水零排放,不仅是对脱硫废水处理工艺的考验,更是破解火电行业发展困局的成功之道。

    浏览量 79 收起
  • 餐厨垃圾无害化处理与资源化利用现状及发展趋势

    餐厨垃圾有机质含量高,具有较高的可再利用价值,但处置不当又极易产生各种环境问题,带来较大危害。基于文献资料,总结了国外餐厨垃圾产生量和...快速预览

    餐厨垃圾有机质无害化处理

    浏览量 68 环境工程技术学报 | 1月前

    餐厨垃圾无害化处理与资源化利用现状及发展趋势

    餐厨垃圾有机质无害化处理

    环境工程技术学报 | 1月前

    摘要:餐厨垃圾有机质含量高,具有较高的可再利用价值,但处置不当又极易产生各种环境问题,带来较大危害。基于文献资料,总结了国外餐厨垃圾产生量和处理现状,我国餐厨垃圾处理设施建设情况及处理能力;分析了我国餐厨垃圾的特性,阐述了我国餐厨垃圾无害化处理的填埋与焚烧、饲料化和生物处理三大类技术,对比分析了主要技术的特点、原理、适用条件、优缺点与应用情况,重点阐述了当前的主流技术——生物处理技术的主要工艺和应用现状;总结了餐厨垃圾资源化利用和无害化处理中存在的技术及管理问题,从推动多种处理工艺优化融合,实施垃圾源头分类收运,完善餐厨垃圾管理体制和政策等技术及管理方面分析了我国餐厨垃圾处理技术未来的发展趋势。


    关键词:餐厨垃圾,资源化,无害化,发展趋势


    作者:邓俊


    餐厨垃圾俗称泔水、潲水,即残羹剩饭,是城市固体垃圾中有机垃圾的重要组成部分。随着我国城市化进程加快和人民生活水平的提高,餐厨垃圾已经成为城市生活垃圾的重要组成部分。在城市生活垃圾结构中,餐厨垃圾的占比为30%~50%,清华大学固体废物污染控制及资源化研究所的统计数据表明,我国城市每年产生6 000万t以上餐厨垃圾。餐厨垃圾极易腐烂变质,若处置不当可能会引发“地沟油”“垃圾猪”等食品安全问题,严重影响市容并污染环境,危及居民身体健康。与其他垃圾相比,餐厨垃圾含有丰富的营养元素和有机质,具有很大的回收利用价值。餐厨垃圾资源化处理可以变废为宝、化害为利,从源头上避免直接作为饲料进入食物链,有效解决餐厨垃圾作为生活垃圾填埋或焚烧造成的资源浪费和环境污染问题,实现社会效益、经济效益和环境效益的统一。因此如何实现餐厨垃圾的资源化利用及无害化处理是我国当前面临的迫切问题,也是社会广泛关注的问题。常规的填埋和焚烧方法不仅浪费大量有机物,也带来严重的二次污染。笔者在分析餐厨垃圾特征及阐述餐厨垃圾资源化处理技术的基础上,分析了目前我国餐厨垃圾资源化处理现状及存在的问题,探讨了餐厨垃圾资源化利用未来的发展趋势。


    1 国内外餐厨垃圾处理现状


    1.1 国外餐厨垃圾处理现状


    欧洲餐厨垃圾产量约5 000万t∕a,欧洲各国特别是德国、法国、英国还有北欧地区的较发达国家等对餐厨垃圾的管理和处理都有相对较为完善的系统和体制。如德国关闭了绝大多数垃圾填埋厂,餐厨垃圾采用机械-生物(MBT)或生物技术进行处理;为鼓励垃圾回收和餐厨垃圾利用,丹麦政府于1987年开始征收填埋税,并逐年提高费率;英国约75%的餐厨垃圾主要采用土地利用方式进行处理,并颁布了餐厨垃圾资源化利用的相关法律条文。


    美国餐厨垃圾产生量约2 598万t∕a。美国对餐厨垃圾产生量较大的单位设置餐厨垃圾粉碎机和油脂分离装置,分离出来的垃圾排入下水道,油脂则送往相关加工厂(如制皂厂)加以利用。对于产生量较小的居民厨房餐厨垃圾,则混入有机垃圾中统一进行处理或通过餐厨垃圾粉碎机粉碎后排入下水道。美国未来垃圾处理趋势是采用堆肥工艺制成肥料或加工成动物饲料进行资源化回收利用。美国各州关于餐厨垃圾处理的政策和方式略有不同,很多州针对当地具体情况,建立了自己的餐厨垃圾处理回收体系,不同州针对餐厨垃圾肥料化产品的品质规定了各自的标准体系。美国餐厨垃圾资源化利用时的优先次序:抑制产生→救济饥饿穷人→饲养动物→工业利用→堆肥→焚烧或填埋。


    日本每年排放的餐厨垃圾约2 000万t。由于餐厨垃圾的倾倒运输费用很高,因此餐厨垃圾处理机得到了推广和应用。为减少餐厨垃圾对环境的污染,并充分利用其中的资源,日本于2000年颁布了《餐厨废物再生法》,该法律规定餐厨加工业、饮食业和流通企业有义务减少餐厨废物的排出量,且就再生利用对象饲料和肥料制定质量标准。《餐厨废物再生法》中规定了餐厨垃圾资源化利用时的优先次序:抑制产生→再资源化(肥料>饲料>油脂等产品>沼气)→减量。


    1.2 我国餐厨垃圾处理现状


    1.2.1 餐厨垃圾处理设施建设及技术工艺


    自2010年开始,国家发展和改革委员会、住房和城乡建设部、原环境保护部、原农业部组织开展了城市餐厨废物资源化利用和无害化处理试点工作。“十二五”期间,成立了100个餐厨垃圾试点城市,覆盖了31个省级行政区并覆盖一、二、三线城市。截至2015年末,全国已投运、在建、筹建(已立项)的餐厨垃圾处理设施(50 t∕d以上)至少有118座,总计处理能力超过2.15万t∕d,其中投入运行的餐厨垃圾处理设施为43座。各地区设施建设总能力相差较大,经济水平较高、人口密度较大的东部沿海城市的餐厨垃圾处理设施规模最大,国内生产总值(GDP)较低的西部地区的处理能力最低。单座设施平均规模相差不大,人口密度较高或城市规模较大的地区单座设施平均规模为150~200 t∕d,人口密度较低或城市规模较小的地区单座设施平均规模为100~150 t∕d,餐厨垃圾处理设施平均规模约为182t∕d,受运行成本和技术稳定性限制,餐厨垃圾集中处理设施的规模一般为100~200 t∕d。由于餐厨垃圾处理处置及资源化利用市场的管理政策欠缺、技术路线单一、运营模式不成熟,导致行业发展不规范,盈利模式不清晰,产业化进程缓慢。


    对118座已确定技术路线的餐厨垃圾处理设施中的111座进行统计,发现采用厌氧发酵技术的有80座,处理能力为1.60万t∕d,占总处理能力的75.9%;采用固体堆肥+液体发酵技术的有4座,处理能力为0.07万t∕d,占总处理能力的3.3%;采用好氧堆肥或快速好氧发酵技术的有16座,处理能力为0.30万t∕d,占总处理能力的14.2%;采用制饲料或其他技术的有11座,处理能力为0.14万t∕d,占总处理能力的6.6%。


    1.2.2 餐厨垃圾处理能力


    E20研究院的《餐厨垃圾处理市场分析报告(2016)》指出,近年来我国经济快速发展,餐厨垃圾以每年10%的增量持续增长。按照城镇人口人均餐厨垃圾产生量为0.15 kg∕(d·人)计算,我国2011年的餐厨垃圾产生量为3 782万t,2015年增至4 222万t,到2020年将增至4 873万t。一方面是餐厨垃圾产生量的快速增长,另一方面是无害化处理能力及水平仍相对不足,大部分城镇的餐厨垃圾难以实现无害化处理,餐厨垃圾收集率及处理率亟待提高。据不完全统计,截至2015年9月,全国已建、在建、筹建的118座餐厨垃圾处理项目,总处理能力约2.15万t ∕d,与“十二五”规划中3万t∕d的处理能力还有差距。此外,《“十三五”全国城镇生活垃圾无害化处理设施建设规划》中要求,到2020年底力争新增餐厨垃圾处理能力3.44万t∕d,城市基本建立餐厨垃圾回收和再生利用体系。而“十三五”末若完成新增规划处理能力建设,餐厨垃圾无害化、资源化处理率仅达36%。我国餐厨垃圾处理能力仍需进一步提升。


    2 我国餐厨垃圾特性及无害化处理技术


    2.1 餐厨垃圾特性


    餐厨垃圾具有一定的特殊性,和产生群体的饮食、生活习惯以及后续的存放和收集方式有关。我国部分城市餐厨垃圾化学成分主要包括淀粉、纤维素、蛋白质、脂类和无机盐等(表1)。由表1可知,我国餐厨垃圾主要特点如下:1)含水率高,通常高达70%~85%;2)有机质含量高,脂肪、蛋白质等含量高达80%~93%(干基);3)油脂含量丰富,约为2%~3%,可以进行回收再加工炼制生物柴油等;4)盐分含量高,约为1%,这会影响后续肥料化利用;5)极易腐烂变质,散发恶臭,传播细菌和病毒,性状和气味都会对环境卫生造成恶劣影响,且容易滋长病原微生物等。


    1.png


    由于餐厨垃圾具有有机质含量高、易生物降解的特点,因此采用生物处理技术可生产有机肥和生物气等高附加值的产品。生物处理技术(厌氧发酵工艺)是现阶段国内外规模化处理餐厨垃圾的主流工艺,也是实现餐厨垃圾减量化、无害化和资源化利用较安全可行的方法[13]。


    2.2 餐厨垃圾无害化处理技术


    餐厨垃圾处理技术包括填埋和焚烧、饲料化及生物处理三大类,其中饲料化和生物处理是目前应用较为广泛的新型餐厨垃圾处理技术。


    2.2.1 填埋和焚烧


    我国传统的餐厨垃圾处置方式有填埋和焚烧。由于我国尚未有效开展餐厨垃圾分类工作,大量餐厨垃圾混入生活垃圾并同生活垃圾一起进行填埋或者焚烧处理。餐厨垃圾进入填埋场占用大量的库容,而且其高含水率及高有机质特性增大渗沥液及高浓度有机污染物的产生量,大大增加填埋场渗沥液处理负荷和处理难度,同时造成餐厨垃圾中有机质资源的浪费,使资源回收利用率基本为零[14]。目前我国正着力控制餐厨垃圾的填埋处置。


    2.2.2 饲料化技术


    餐厨垃圾中含有大量的有机营养成分,其饲料化具有相当的优势。目前主要有2类饲料化技术:干式饲料及蛋白饲料[14]。其中干式饲料要求物料在95~120 ℃下至少干燥2 h,达到含水率小于15%,杂质低于5%;蛋白饲料由微生物自身及其蛋白分泌物组成(60~80 ℃)。由于餐厨垃圾来源广泛,成分复杂,采用饲料化利用技术时存在很多安全隐患[15],如生物同源性、病菌、重金属、有毒有机物等。为了提高餐厨垃圾饲料化利用过程的可靠性及安全性,CJJ 184—2012《餐厨垃圾处理技术规范》中规定了用于生产饲料的餐厨垃圾及其生产工况。


    2.2.3 生物处理技术


    生物处理技术包括通过好氧发酵获得生物质肥料和通过厌氧发酵获得洁净的沼气能源等。好氧生物处理技术又包括好氧堆肥、制备生化腐殖酸、快速好氧发酵。


    2.2.3.1 好氧堆肥


    好氧堆肥是指在有氧条件下,利用好氧微生物对堆积于地面或者专门发酵装置中的有机质进行生物降解,最终形成稳定的高肥力腐殖质[16]。餐厨垃圾中有机质含量高,营养元素全面,C∕N较低,是微生物的良好营养物质,适于采用堆肥处理,主要包括传统好氧堆肥发酵技术及高温好氧堆肥发酵技术2类。还可在好氧堆肥的基础上投入蚯蚓,利用蚯蚓自身丰富的酶系统,将餐厨垃圾有机质转化为其自身或其他生物易于利用的营养物质,加速堆肥的稳定化过程[17]。但我国餐厨垃圾的高盐分、高油分问题,在很大程度限制了肥料化利用技术的推广与应用。


    2.2.3.2 制备生化腐殖酸


    通过高温复合微生物和酶转化技术、快速腐殖化集成装备、转化工艺精准控制技术集成,筛选自然界生命活力和增殖能力强的高温复合微生物菌种,在生化处理设备中,对餐厨垃圾等有机垃圾进行高温高速好氧发酵,使各种有机物得到快速降解和转化为生物腐殖酸肥料。该腐殖酸肥料可以作为有机源土壤调理剂,用于土壤质量提升,起到降低化肥利用率,提高农产品产量和改善农产品品质的作用[17]。该技术优点是转化速度快,有机质利用率高,产品一致性高,可进入工业产品销售通路。该技术为好氧技术的主流代表工艺,已在北京、广州、成都、乌鲁木齐等城市成功应用,但该工艺的液相进入污水处理系统会造成污水负荷增大及液相中有机质的浪费。


    2.2.3.3 厌氧发酵


    餐厨垃圾的厌氧发酵是指在无氧条件下,利用兼性微生物及厌氧微生物的代谢作用将复杂有机物分解为小分子有机物及无机物,在此过程中可产生甲烷和氢气等能源物质,此外,利用厌氧发酵可获得各种有机酸和醇类,如乙醇、乙酸、丁酸、葡萄糖糖化酶、乳酸等,从而实现对餐厨垃圾的减容减量及资源化利用。厌氧工艺产生的沼气可转化为电能与燃气,厌氧消化罐中产出的沼渣可以进行二次发酵制肥处理。通常厌氧发酵产生的沼气中甲烷含量为60%~75%,据杭州市餐厨垃圾一期处理工程经验,处理能力为200 t∕d时,沼气产量可达13 000 m3∕d,当沼气中的甲烷浓度为60%时,可产生电能约为26 000 kW·h∕d,油脂回收率可达88%[17]。厌氧发酵后产生的沼气还可以经过净化、加压后进入燃气管网,供给居民日常生活使用。

    餐厨垃圾高油脂、高盐分也会导致过度酸化及抑制菌体生长,不利于持续而稳定地降解餐厨垃圾。此外,厌氧消化产生的沼渣处理仍是一大难题,通常需干化处理后填埋,或重新堆肥后制成有机肥[18]。因此,寻找适合我国餐厨垃圾组分与特点的厌氧处理工艺,并保证厌氧消化系统的运行稳定,降低运行管理难度及费用是当前亟待解决的关键技术问题。


    2.2.4 技术比较


    主要餐厨垃圾处理技术比较见表2。


    3 我国餐厨垃圾资源化利用未来趋势


    3.1 推动多种工艺融合创新


    考虑到餐厨垃圾成分复杂,各地区饮食习惯差别大致使垃圾组分差异较大,往往通过预处理对餐厨垃圾进行杂质去除和油脂回收。由于我国尚未全面开展垃圾分类工作,因此收集到的餐厨垃圾中仍然含有大量杂质,包括金属、玻璃、陶瓷等无机杂质和废纸、废塑料、废餐盒、筷子等非营养性有机物,合理的预处理技术不仅可以实现杂质的有效去除,同时能为后续处理环节创造有利条件。预处理技术应根据收运的餐厨垃圾成分和主体工艺要求而定,并做出针对性设计,以实现预处理效果佳、后续资源化工艺运行稳定的目的。


    餐厨垃圾成分的复杂性决定了使用单一的现有处理技术难以完成高效高产值处理,因此,对餐厨垃圾进行组分分离、综合运用已有多项处理技术是必然的处理思路。如将收集到的餐厨垃圾初步去除杂物后,利用离心或压榨等手段得到有机质干渣和油水混合物,有机质干渣可用于微生物好氧发酵生产有机肥;油水混合物再次分离后,油脂可用于生产生物柴油,最终剩下的水分含有丰富的有机质,可进行厌氧发酵生产能源气体[19],作为高品质热源循环用于发酵装备,产生的沼渣可以进入好氧系统发酵。通过融合与技术创新,可以有效解决好氧发酵液相有机质浪费、厌氧发酵沼渣处理难题,达到固相液相全利用,物质能量全回收,既弥补了采用单一处理技术存在的短板,又增加了餐厨资源化产品的多样性,实现投资收益最大化,是未来餐厨垃圾处理技术发展的趋势。


    3.2 实施源头减量和垃圾分类


    餐厨垃圾源头分类收集不仅可以实现源头减量,有效提高餐厨垃圾收集数量及质量,同时可以降低预处理成本,提高后续资源化产品质量。当前应加大宣传教育,大力开展餐厨垃圾源头减量和分类活动,提高居民环境意识,养成勤俭节约、物尽其用、减少浪费的文明生活习惯,促进源头减量和资源回收。


    餐厨垃圾的分类收集不仅可以实现餐厨垃圾的有效回收利用,同时可减少生活垃圾总量的50%以上。餐厨垃圾单独收集将显著提高生活垃圾热值,从而便于后续焚烧或者填埋处理,不仅可以降低焚烧过程的烟气污染,而且可以提高填埋场使用年限,减少渗滤液处理负荷。


    垃圾源头分类通过回收可循环利用的垃圾减少资源浪费,改变粗放的垃圾混合收运方式,缓解垃圾后续处理处置的压力,有效降低垃圾处理成本及土地资源的消耗,具有很大的经济效益、生态效益及社会效益。未来餐厨垃圾处理需要做到分类收集、分类运输和分类资源化,不断提高餐厨垃圾处理水平,在确保餐厨垃圾得到无害化处理和处置的基础上,尽可能做到资源化。


    3.3 完善餐厨垃圾管理体制和政策


    在餐厨垃圾管理体制方面,欧洲等发达国家在餐饮部门设置专门的餐厨垃圾存放点,对餐厨垃圾实行单独分类收集,对运输和处理实行全过程控制管理,特别在食品生产加工环节,采取成品或半成品等净菜进城措施,源头削减和抑制餐厨垃圾的产生,并采取强制资源化利用的措施。我国餐厨垃圾纳入规范化、标准化管理起步较晚(2005年),在收集、运输和处理方面的政策法规和标准相对滞后。因此,餐厨垃圾处理应统筹考虑餐厨垃圾的分类收集和运输、处理设施建设、运行监管等重点环节,落实餐厨垃圾从产生、运输、处理等各环节的污染控制,构建“因地制宜、技术合理、环保达标”的餐厨垃圾处理体系。建立餐厨垃圾处理及资源化利用监控技术体系与信息化管理平台,实现餐厨垃圾处理系统的统筹监控管理与高效信息化运行,显著提升餐厨垃圾资源化利用系统的整体安全程度和信息化水平。


    4 结语


    (1)我国餐厨垃圾具有高含水率、高有机质含量、高油脂含量、高含盐量的特性,理化特性地域性差异大,导致餐厨垃圾处理难度及资源化利用难度高。目前我国餐厨垃圾处理工艺以厌氧发酵工艺为主,部分为饲料化技术,餐厨垃圾已有的处理设施尚无法满足日益增大的餐厨垃圾量需求,餐厨垃圾处理项目建设运行的标准化体系和管理制度尚未建立。


    (2)随着餐厨垃圾资源化处理技术水平的不断提升与餐厨垃圾管理法规的日益完善,应围绕餐厨垃圾处理开展多种技术融合实践与创新,同步实行垃圾分类收运与管理,最终实现餐厨垃圾高效资源化利用及无害化处理的目标,推进循环经济社会的快速发展。

    浏览量 68 收起
  • 中国钢铁行业烟气超低排放标准、技术路线及实践应用分析

    钢铁行业已成为中国大气污染防治重点行业,目前中国已提出钢铁行业烧结、球团等工序超低排放限值。总结了烧结(球团)、焦炉、高炉、转炉等多个...快速预览

    钢铁行业超低排放

    浏览量 234 《钢铁》 | 2月前

    中国钢铁行业烟气超低排放标准、技术路线及实践应用分析

    钢铁行业超低排放

    《钢铁》 | 2月前

    摘要:钢铁行业已成为中国大气污染防治重点行业,目前中国已提出钢铁行业烧结、球团等工序超低排放限值。总结了烧结(球团)、焦炉、高炉、转炉等多个工序高效净化技术路线,集成了源头减排、过程控制和末端治理的多污染物超低排放技术体系,包括"烟气循环技术"、"半干法脱硫耦合中低温SCR脱硝技术"、"活性炭法一体化技术"、"臭氧氧化硫硝协同吸收技术"、"高炉炉料结构优化的硫硝源头减排技术"、"转炉二次烟气预荷电袋滤器除尘技术"等关键技术,上述技术在中国部分钢铁企业均有应用实践。最后提出了生产技术绿色化、污染计量合理化、加强非常规污染物管控、重视钢铁行业碳排放的发展建议。


    随着电力行业超低排放技术的推广应用,中国大气污染防治重点已从电力行业向非电行业转变,其中,钢铁行业是减排重点。2018年中国粗钢产量为9.28亿t,位居世界第一,占全球总产量的51.32%。中国钢铁生产以长流程工艺为主,包括烧结、球团、焦化、高炉、转炉和轧钢等,较高的能耗导致大量污染物排放,行业整体呈现出生产工序多、污染种类杂、排放总量大的特点。2017年全国钢铁行业SO2、NOx、粉尘排放量分别为32.4万t、214万t、120.9万t,位居工业排放源前三。因此,开展钢铁行业环保技术升级,对于改善环境空气质量、打赢蓝天保卫战具有重要意义。

    钢铁企业是大气污染的重点行业,钢铁生产各个环节均产生颗粒物、SO2、NOx等废气污染物。钢铁企业排放的废气中,颗粒物排放主要集中在原料场、烧结、炼铁、炼钢、炼焦等工序,SO2主要集中在烧结、球团等工序,NOx主要集中在烧结、炼焦、热轧等工序。此外,氟化物和氯化氢主要集中在烧结和冷轧工序,特殊钢酸洗和电渣冶金也有氟化物产生,二噁英主要集中在烧结工序和电炉炼钢工序。


    “十一五”期间,中国部分钢铁企业开始开展烧结烟气脱硫,技术来源以国外或电力行业引进为主、自主研发为辅。烧结机脱硫工艺以湿法脱硫为主,占75%以上,但大型烧结机半干法应用占比逐渐升高。“十二五”期间,钢铁行业开始执行GB16297—2012《钢铁烧结、球团工业大气污染物排放标准》,颗粒物、二氧化硫、氮氧化物排放标准加严的同时,开始关注二噁英等非常规污染物,基于半干法的钢铁烧结/球团烟气多污染物协同控制技术成为主流趋势。“十三五”以来,钢铁行业全流程超低排放成为发展趋势。中国钢铁行业大气污染治理已实现从“单工序”向“全流程”过渡,控制技术也已实现从“单一污染物控制”向“多污染物协同控制”的技术升级。


    本文针对目前国内外钢铁行业大气污染物控制标准和技术进行调研,从烧结(球团)、焦炉、高炉、转炉等多个工序提出钢铁行业全流程超低排放技术路线,并提出未来钢铁行业超低排放的发展建议,为推动钢铁的产业升级和绿色发展提供参考。


    1 中国钢铁行业超低排放标准


    针对烧结、球团工序的排放限值变化如图1所示。2017年6月中国环境保护部发布了《钢铁烧结、球团工业大气污染物排放标准》修改单(征求意见稿),提出颗粒物特别排放限值从40降至20mg/m3,SO2特别排放限值从180降至50mg/m3,NOx特别排放限值也从300大幅降至100mg/m3。在2018年政府工作报告中李克强总理提出“推动钢铁等行业超低排放改造”。随后,生态环境部联合各部委在2019年4月发布《关于推进实施钢铁行业超低排放的意见》,将烧结(球团)烟气中颗粒物、SO2、NOx的超低排放限值分别规定为10、35、50mg/m3,要求到2020年底前,重点区域钢铁企业力争60%左右产能完成改造。



    针对焦化工序,GB1171—2012《炼焦化学工业污染物排放标准》中提出焦炉烟气颗粒物特别排放限值为15mg/m3,SO2和NOx特别排放限值分别为30和150mg/m3。中国生态环境部联合各部委发布的《关于推进实施钢铁行业超低排放的意见》中提出焦炉烟囱颗粒物、SO2、NOx的超低排放限值分别为10、30、150mg/m3。2018年9月份,河北省正式发布国内首个焦化工序超低排放标准DB13/2863—2018《炼焦化学工业大气污染物超低排放地方标准》,提出颗粒物、SO2、NOx的超低排放限值分别为10、30、130mg/m3,要求河北省现有企业自2020年10月1日开始实施。


    总体而言,超低排放限值的出台将极大地促进钢铁行业超低排放技术升级,有利于污染物深度减排。


    2 中国钢铁行业全流程超低排放技术体系


    近年来,中国钢铁行业基于“多污染物协同控制”和“全过程耦合”的技术理念,开发了“选择性烟气循环技术”、“半干法脱硫耦合中低温SCR脱硝技术”、“活性炭法一体化技术”、“臭氧氧化硫硝协同吸收技术”、“高炉炉料结构优化的硫硝源头减排技术”等新型技术涵盖了烧结、球团、焦炉、高炉等多个工序,为钢铁行业超低排放改造提供强有力的技术支撑。


    2.1 烧结(球团)烟气超低排放技术


    烧结工序的颗粒物、SO2、NOx排放量占整个钢铁行业排放总量的30%、60%和50%左右,非常规污染物二噁英占整个钢铁行业的90%以上,是钢铁行业大气污染排放量最大的工序。烧结烟气具有烟气流量大、排烟温度低、NOx质量浓度波动比较大(200~500mg/m3)的特点。随着排放指标的加严,对原有脱硫和除尘设施进行提标改造,可实现颗粒物和SO2达标排放。在脱硝方面,传统热电行业脱硝技术无法直接移植,开展过程控制和末端治理相互耦合的关键技术,已成为烧结烟气超低排放技术的关键。球团烟气与烧结烟气排放特征较为相似,末端治理技术可以互为借鉴。


    2.1.1 烧结烟气循环技术


    烧结烟气循环技术是通过选择性收集不同的风箱(或主抽后烟道)的部分载热烟气,混合后返回至烧结台车,从而回收部分烧结余热,降低固体燃耗。同时,返回的烟气还含有NOx、CO和二噁英等污染物,可部分被分解或转化,从而实现污染物减排。此外,烟气循环可以实现烟气减量化,降低末端污染控制设施处理负荷及投资和运行成本。


    烧结烟气循环技术按取风位置的不同分为内循环(取风位置:风箱)和外循环(取风位置:主抽后烟道)两种工艺模式,最早由国外开发和应用。两种工艺模式在设计理念上有所差异,在烟气循环率、污染物减排、节能等方面侧重有所不同。但总体而言,内循环工艺可以选择性选取高温、富氧或污染物质量浓度高等不同特点的废气循环,是目前主流的烧结烟气循环技术,如日本新日铁开发的区域废气循环技术、德国HKM 开发的LEEP(low emission andenergy optimized sinter production)工艺、及奥钢联公司开发的Eposint(environmental process optimizedsintering)工艺。


    与国外相比,中国烧结烟气循环技术起步较晚。中国科学院过程工程研究所和河钢集团有限公司等单位在国家重点研发计划项目“钢铁行业烟气多污染物全过程控制耦合关键技术”的支持下,联合开发了烧结机选择性烟气循环技术(SFGC),如图2所示,在烧结机风箱选择、关键设备设计等方面取得原创性突破,在河钢邯钢2×360m2+2×400m2烧结机上运用,实现废气循环率20%以上,吨矿外排烟气量降低15%以上,烧结矿产量提高4%、固体燃耗降低3%,CO外排总量降低20%以上。热风烧结,解决了环境空气质量指标CO控制难题,达到“节能”和“减排”功能耦合;烟气减量,突破了超低排放技术经济性的瓶颈,有效耦合匹配后续末端治理设施达到过程控制及末端治理的目标。



    烟气循环技术主要特点是将部分烧结烟气通过循环烟道返回烧结机上再次参与烧结,利用烧结过程的高温使大部分氮氧化物、二噁英裂解掉,并使烟气中的SO2富集,降低脱硫烟气处理量及成本,同时,吸收利用烟气中的热能,降低烧结能耗。其存在的主要问题就是工艺布置比较复杂,成品烧结矿中易出现硫富集现象。因此,风箱的合理选择是该技术的关键。


    2.1.2 半干法脱硫耦合中低温SCR脱硝技术


    烧结烟气净化脱硫主要分为三类:湿法、干法与半干法,其中半干法如循环流化床(CFB)、旋转喷雾干燥法(SDA)等在烧结烟气净化中应用逐渐增多,如三钢、梅钢、邯钢、鞍钢等均使用半干法脱硫。


    SCR脱硝技术是指在催化剂存在的条件下,用NH3或尿素作为还原剂将NOx还原成N2。工业上应用最多的是V2O5-WO3/TiO2催化剂,不仅对NOx脱除效率较高,还具有脱除二噁英的作用,因此烧结烟气使用SCR技术具有良好的前景。烧结烟气SCR脱硝有两种布置方式:一种是将SCR系统布置在预除尘之后,脱硫装置前;另一种是将SCR系统布置在预除尘和脱硫装置之后,该种布置方式可在极大程度上防止催化剂机械磨碎和失活。随着中国重点区域钢铁行业超低排放改造的推进,采用第二种布置方式的半干法脱硫耦合中低温SCR脱硝技术受到重点关注。


    半干法脱硫+SCR脱硝工艺流程如图3所示,原烟气通过GGH换热器与脱硝后的净烟气换热并升温,再与加热炉燃烧产生的高温烟气混合升温,然后与NH3在混合器的扰动下得以充分混合,混合后的烟气进入SCR反应器。


    3.png


    2016年,宝钢4号600m2烧结机在原有的两套CFB脱硫后增设两套SCR脱硝装置,利用高炉煤气作为热风炉补热燃料。CFB脱硫后烟气中SO2质量浓度降至50mg/m3以下,出口粉尘质量浓度达到20mg/m3以下,NOx排放质量浓度在200~550mg/m3,二噁英排放毒性当量质量浓度3.0ngTEQ/m3以下(毒性当量:toxic equivalent quantity,TEQ),设计烟囱出口NOx排放质量浓度在110mg/m3以下,二噁英毒性当量质量浓度不大于0.5ngTEQ/m3。自投运以来,运行状况良好且各种污染物排放指标优于设计指标。


    目前半干法脱硫+SCR脱硝技术已在烧结机上得到了成功应用,能实现粉尘、SO2、NOx排放质量浓度分别低于10、35、50mg/m3(标准态),适用于烧结机烟气量大、温度和水含量波动较大的条件,同时对二噁英、SO3、HCl、HF和重金属等污染物有一定脱除效果。但该工艺存在脱硫副产物量大的问题,尚无公认的最佳应用途径或资源回收价值,需作为废物进行处理。


    2.1.3 活性炭法一体化技术


    活性炭一体化技术是利用活性炭的吸附和催化性能对污染物进行净化处理。活性炭法一体化技术是以活性炭为吸附剂,吸附烟气中SO2,吸附饱和后活性炭再通过加热解吸出高质量浓度SO2混合气体可用来制取98%商品硫酸,脱硫率可达95%。由于活性炭的催化作用,加入HN3可将烟气中的NOx还原成N2和H2O。该技术还可同步脱除二噁英、重金属、汞及其他有毒物质,是一种资源回收型综合烟气治理技术。


    活性炭一体化工艺从烟气和活性炭运动方式看可分为两类:错流式和逆流式。错流式中活性炭和烟气分别作垂直运动和水平运动,两者在运动方向垂直接触,在国内应用相对较早,典型有太钢、日照等。逆流式工艺中活性炭自上而下、烟气自下而上,两者逆流相向接触,在国内河钢邯钢将逆流式工艺首次应用于烧结烟气处理。



    宝钢湛江钢铁2台新建的550m2烧结机同步配套建造2套烧结烟气活性炭净化系统,工艺流程如图4所示。烧结烟气活性炭净化系统采用分层移动床型结构,每个吸附单元由左右对称的6个反应室组成,分别为前室、中室和后室,在不同的部位设有入口格栅、中间多孔板及出口微格栅。吸附塔空塔流速为0.15~0.20m/s。活性炭净化系统自投运以来,各种污染物排放都优于设计指标。2017年4月经该系统处理前烟气中SO2质量浓度为410~640mg/m3,NOx质量浓度为230~370mg/m3,二噁英的毒性当量质量浓度为0.82~5.40ngTEQ/m3,处理后SO2质量浓度为1.2~8.0mg/m3,NOx质量浓度为90~140mg/m3,二噁英的毒性当量质量浓度下降至0.0023~0.008 9ngTEQ/m3,脱硫效率为98.5%~99.7%,脱硝效率为57.6%~69.5%,二噁英脱除率为99.4%~99.9%。



    河钢邯钢在国内率先选用了逆流式活性炭选择性催化还原(CSCR)净化烧结烟气工艺,工艺流程如图5所示。SO2通过活性炭的吸附-解析,再经过催化氧化制成浓硫酸,实现了资源回收利用。通过脱硫段后,在上升的烟气中进行喷氨,进入脱硝段后在活性炭的催化作用下NOx转化为N2和水进行脱硝。2018年2月邯钢西区烧结机投运了逆流式CSCR工艺,实现长周期稳定运行和较高的烟气净化效率,2018年上半年原始烟气颗粒物质量浓度为50~130mg/m3,SO2质量浓度为750~900mg/m3,NOx质量浓度为300~400mg/m3,净化后烟囱NOx排放质量浓度低于50mg/m3,SO2排放质量浓度低于10mg/m3,固体颗粒物排放质量浓度低于15mg/m3。


    活性炭吸附法技术工艺简单,占地面积小,是一种可同时去除粉尘、NOx、SO2等多污染物的烟气净化技术,且该技术资源化利用率高,副产物为高质量浓度SO2气体,可用于制备浓硫酸或其他高附加值的单质硫等,具有良好的发展前景。


    2.1.4 臭氧氧化硫硝协同吸收技术


    烧结烟气臭氧氧化脱硝技术是通过氧化-吸收双梯段的功能耦合,利用现有脱硫塔对高价NOx和SO2进行协同吸收的高效脱硝技术。该技术主要是利用O3的强氧化性将NO氧化为高价态NOx(NO2或/和N2O5),然后在脱硫塔内将NOx和SO2同时吸收转化为硝酸盐或硫酸盐,脱硝效率随O3/NO物质的量之比增加、反应温度优化等因素得到强化。烟气中其他组分如SO2、CO和HCl等,从热力学和动力学分析,其与O3反应速率均远远低于NOx的氧化反应速率,因此可实现O3的选择性氧化调控。

    该技术首先通过臭氧发生器,制备强氧化剂O3,通过臭氧分布器等设备喷入脱硫吸收塔前段烟道,O3进入烟道后与烟气中NO反应,通过定向调控的手段,将其氧化为高价NOx(NO2或/和N2O5),随后高价NOx与SO2一并进入后续的吸收反应塔系统,实现NOx和SO2等多污染物的协同脱除。


    目前国内应用臭氧氧化硫硝协同吸收工艺的烧结(球团)烟气净化工程有唐钢中厚板240m2烧结机、唐钢不锈钢265m2烧结机、宝钢梅钢180m2烧结机、燕山钢铁300m2烧结机、津西钢铁265m2烧结机等。


    唐钢中厚板240m2烧结机臭氧氧化脱硝示范工程是基于国家重点研发计划课题《烧结烟气低温氧化脱硝技术及示范》所研发的臭氧氧化硫硝协同吸收技术,由中国科学院过程工程研究所和河钢集团有限公司联合开发,工艺流程如图6所示,通过“梯级氧化”的设计理念,实现NOx超低排放。该工程烟气量为130万m3/h,初始NOx质量浓度为370mg/m3,脱硝系统启用后,结合现有密相干塔半干法脱硫吸收,可实现烟囱NOx排放质量浓度低于50mg/m3,满足国家超低排放标准要求。唐钢青龙炉料200万t/年球团生产线,是河钢集团有限公司承担的国家重点研发计划课题《球团烟气多污染物超低排放技术及示范》的示范建设点,将采用臭氧氧化+SDA+预荷电的超低排放技术路线,并于2019年开始建设。



    臭氧氧化硫硝协同吸收技术系统简单,占地面积小,该技术适用于烟气温度较低的烧结机,在实现排放指标的同时,可减少投资和运行费用。通过臭氧的氧化作用,不易被吸收剂吸收的NO在烟道中被氧化为高价态NOx,可与SO2一起在后续脱硫塔中同时被吸收,不需再配置独立的脱硝装置,同时不存在SO3无法脱除的问题。


    2.2 焦炉烟气超低排放技术


    焦炉烟气具有低硫(80~300mg/m3)、高氮(600~1200mg/m3)的排放特征,同时含有因煤气窜漏而产生的H2S、HCN等非常规污染物。相对于150mg/m3)的国家特别排放限值和130mg/m3)的河北省超低排放限值,焦炉烟气NOx排放远远超标。因此,NOx的深度治理成为焦炉烟气超低排放技术的关键。


    2.2.1 钠基SDA脱硫耦合低温SCR脱硝技术


    焦炉烟气进入SDA脱硫塔,与旋转喷雾器雾化的Na2CO3饱和溶液充分接触,完成SO2的吸收;脱硫后的烟气进入布袋除尘器,除尘后进行低温SCR脱硝,净化后的烟气经烟道进行外排。该工艺先采用脱硫除尘,有利于改善脱硝反应环境。SDA脱硫同时可将焦炉烟气中的焦油、有机物等污染物部分去除,提高整个工艺脱除性能的稳定性。焦炉烟气脱硫后烟气温度低于180℃,需进行烟气再热达到低温SCR脱硝温度区间。该工艺系统含有脱硫塔、除尘器、脱硝反应器、喷氨系统、热风炉等组成,整套系统无废水产生,脱硫副产物可利用,焦炉烟气可达到排放标准。目前,该技术在宝钢湛江钢铁、山东铁雄新沙、河钢邯钢、鞍钢、河钢唐钢等企业已获得广泛应用。


    中冶焦耐(大连)工程技术有限公司在宝钢湛江钢铁炼焦工序建立了世界首台套“SDA旋转喷雾脱硫+低温SCR脱硝除尘”工程,工艺流程如图7所示。该炼焦工序安装4×65孔7m的顶装焦炉,单座焦炉烟道废气量(180℃)约为26万m3/h,原始烟气颗粒物约为20mg/m3,采用混合煤气作为燃料后的SO2质量浓度约为80mg/m3,采用废气循环和分段加热的燃烧控制技术后NOx可降至约500mg/m3。净化后烟气颗粒物排放质量浓度降低至5mg/m3以下,SO2和NOx的排放质量浓度也分别降低至20和120mg/m3以下,低于国家特别排放限值。


    7.png


    该工艺采取先脱硫的模式可以有效控制后续脱硝硫酸氢铵的生成,为低温高效脱硝创造条件;一体化装置可以集中进行除尘、加热和脱硝,减少管道输送的热损耗,模块化可提高脱硝操作和检修的灵活性;采用低温脱硝催化剂可使脱硫后的烟气仅需小幅加热即可进行高效率脱硝。存在主要问题是旋转喷雾器成本较高,且进脱硝反应器的烟气温度较低,对脱硝催化剂的性能提出了更高的要求。


    2.2.2 活性炭法一体化技术


    该工艺采用活性炭能同时脱除焦炉烟气中SO2、NOx。焦炉烟气先进入预热锅炉回收热量,再冷却降温,然后进入活性炭吸附装置。吸附塔分为两级,第一级先脱硫,焦炉烟气中SO2首先被吸附在活性炭表面,随后在烟气中O2和水蒸气存在的条件下,发生催化氧化反应。第二级脱硝,喷入NH3作为脱硝还原剂进行脱硝处理,反应生成N2和H2O,实现NOx的脱除。在脱硫脱硝的同时,协同脱除H2S、HCN等污染物。活性炭经过再生塔再生,可循环利用。净化后的烟气经增压风机进入烟囱外排。


    依托国家重点研发计划课题《焦炉烟气多污染物协同控制技术及示范》,中国科学院过程工程研究所、中冶焦耐(大连)工程技术有限公司、河钢集团有限公司等单位联合开发了活性炭法一体化技术,工艺流程如图8所示。在该工艺中,两段式吸附塔可以避免硫酸铵晶体影响脱硝效率的问题,同时结合焦炉烟气SO2初始质量浓度较低的特点,首次提出将再生得到的SO2输送至化产车间用于生产硫酸铵化学品,物理损耗的活性炭粉用于污水处理。


    8.png


    该工艺目前在唐钢美锦焦炭厂分别建立了3000m3/h的小试平台和30000m3/h的中试平台。根据小试结果,可实现脱硝效率80%,烟气出口SO2质量浓度低于15mg/m3,NOx质量浓度低于150mg/m3。2019年,该技术将在唐钢美锦150万t/年焦炉上建立全烟气示范工程。


    活性炭法具有系统占地面积小,所用物资均可市场采购,特别是该系统充分利用了焦化系统的各项资源,没有新的污染物产生的优点。但该工艺存在大规模改造应用的经济性较差问题。


    2.3 高炉炉料结构优化的硫硝源头减排技术


    吨球团矿的SO2和NOx排放量仅为烧结矿的约1/2和1/3,提高高炉入炉原料中球团矿比例,有利于实现钢铁行业硫硝源头减排。目前,国内外钢铁企业高炉冶炼球团矿比例如图9所示。欧美国家的高炉球团矿比例普遍在90%以上,瑞典SSAB厂为100%全球团冶炼,墨西哥Monclova厂为93%,美国Ashland厂为90%。亚洲国家高炉球团矿占比普遍较低:韩国浦项光阳厂为12%,日本新日铁为10%,中国河钢集团平均为10%,主要是因为球团矿的碱度较低(碱度为0.1~0.2)。



    制备球团的原料中,含有较多的碱性物,如CaO、MgO等,这些碱性物质将与球团过程中的酸性成分SO2和NOx等发生化学反应,将SO2和NOx削减在球团制备过程中,实现源头抑制SO2和NOx的目的;另外,高炉内部也由于原料中含有一定的碱物质,对高炉内部产生的SO2和NOx酸性物质有很好的抑制效果。为保证高炉冶炼造渣的要求(碱度1.05~1.20),熔剂性(碱度0.8~1.0)球团的生产和高炉炉料结构优化是提高高炉球团比例的关键技术,也是实现整个钢铁行业硫硝源头减排的重要途径。


    河钢集团有限公司承担的国家重点研发计划课题《基于高炉炉料结构优化的硫硝减排技术及示范》,开发了熔剂性球团生产和高炉炉料结构优化等关键技术,并在唐钢不锈钢550m3高炉建立示范工程,实现60%以上球团比例高炉冶炼的稳定运行。


    通过高炉炉料优化增加球团矿用量,不仅可以从源头和过程降低钢铁行业NOx和SO2的排放,减轻末端治理压力;还可降低高炉入炉焦比,提高煤气利用率,达到节能减排的效果。


    2.4 转炉二次烟气预荷电袋滤器除尘技术


    转炉烟气分为一次烟气和二次烟气,其中一次烟气含有大量的CO,可通过湿法除尘、半干法除尘、干法除尘等除尘方式净化后回收成转炉煤气,整个系统外排污染物较少。二次转炉二次烟气主要污染物是烟粉尘,包括转炉吹氧过程中一次除尘外逸烟尘,同时在兑铁水和出钢水过程中剧烈高温反应产生的颗粒物粉尘,具有烟气温度高、瞬间烟气量大、颗粒物粒径小等特征。二次烟气初始颗粒物质量浓度为3~5g/m3,主要成分为铁氧化物,占40%~60%。


    针对转炉二次烟气的排放特征,中钢集团天澄环保科技股份有限公司开发了预荷电袋滤器除尘技术,将预荷电和直通式袋式除尘器复合形成一体化装置,如图10所示。粉尘预荷电后在滤袋表面将形成海绵状粉饼结构,能提高净化效率,同时降低运行阻力。中钢天澄在鞍钢炼钢总厂2×180t转炉二次烟气净化项目中建成示范工程,处理风量2×60万m3/h。2014年12月正式投运,截止目前持续稳定,运行可靠,颗粒物排放质量浓度低于10mg/m3,技术性能指标达到超低排放,运行阻力为700~1 000Pa,低于传统袋式除尘器。目前,在日照钢铁、新余钢铁、正大特钢、唐钢青龙、柳钢等得到推广应用。



    预荷电袋过滤技术可有效去除烟气中PM2.5细颗粒物,排放质量浓度小于10mg/m3,可实现超低排放,是技术发展方向,适用于新建环保项目和环保提标改造;粉尘预荷电后袋式除尘器运行阻力为700~950Pa,比传统袋式除尘器阻力下降40%以上,节能显著;且预荷电装置体积小、造价低、安装方便、便于实施,应用前景广阔。


    3 结语


    从目前全国钢铁企业超低排放开展情况来看,取得了较好的治理效果,但在钢铁行业统筹规划、污染物计量合理性、非常规污染物管控、碳排放重视程度等方面仍存在一定问题。因此,对于下一步推动全国范围内的钢铁行业超低排放改造乃至钢铁行业的环保发展,提出如下建议:


    (1)生产技术绿色化。积极研发全氢冶炼技术、高炉高比例球团(全球团)冶炼等新技术,实现钢铁行业多污染物的大幅减排。


    (2)污染计量合理化。适当允许不同生产工序之间污染物等量或减量置换,污染物计量由“单工序独立计量”向“全流程总量折算”过渡,形成吨钢或吨铁污染物排放的计算方式。


    本文作者:于勇 朱廷钰等

    浏览量 234 收起
  • 城市化、财富增值和能源转型:发达国家和快速发展的亚太经济体的经验比较

    在全球范围内,城市地区在过去二十年间不断扩张,城市人口比例超过一半。除了例如美国等城市化程度高的发达国家外,诸多发展中国家也正在经历着...快速预览

    城市化能源供应能源转型

    浏览量 97 交能网 | 2月前

    城市化、财富增值和能源转型:发达国家和快速发展的亚太经济体的经验比较

    城市化能源供应能源转型

    交能网 | 2月前

    引言: 在全球范围内,城市地区在过去二十年间不断扩张,城市人口比例超过一半。除了例如美国等城市化程度高的发达国家外,诸多发展中国家也正在经历着由农村经济向城市经济的快速转变。因此,城市的发展和由城市化引发的各种变化是21世纪的关键议题之一。城市化带来的一个显著变化是对能源需求的不断上涨,因而针对城市范围内的能源转型成为了各国关注的焦点。在不同的经济体之间,城市能源与污染问题呈现出了具有时间和空间差异性的不同表现。为了进一步推动城市能源转型并促进该地区的经济发展,研究城市化,经济增长和能源供需这三者之间的关联,对政府制定能源政策和展开相关工作具有一定的参考意义。


    高楼林立,人潮拥挤是全球城市的共同特征,为了保障城市居民活动的正常运行,能源供应与消耗往往居高不下。据联合国预估,到2050年城市人口将达到60亿之多,与之相伴而来的是日益严重的能源危机和气候威胁,无论是发达国家还是发展中国家,能源转型都迫在眉睫。亚太地区近年来成为了全球环境议题的焦点,由于该地区人口基数和经济财富的崛起与老牌资本主义国家相比,具有后发且迅速集中的显著特点,尤以中国为例,因而发达国家与发展中国家的能源转型路径也不尽相同。通过比较在不同时间点发展的经济体其能源供需之间的差异性,可以更好地了解城市化在能源转型中的作用与影响。


    联系:城市发展,环境变迁和能源转型


    城市环境变迁理论


    城市的发展会带来怎样的环境挑战?这一问题在不同收入水平的城市之间给出了不同的答案。基于经验趋势,高收入城市相较于低收入城市,其环境负担会呈现出分散性和延迟性。城市环境变迁理论认为:


    贫穷的城市,其环境挑战会有本地化,即刻发生和健康威胁的特征;


    中等收入,快速发展的城市,环境负担会遍布整个城市或地区,其影响会有所延迟,并对健康和生态可持续性存在威胁;


    富裕或高收入的城市,环境负担是全球性且跨代的,主要是对可持续性的威胁。因而在不同的收入水平上,会有不同的问题占主导,但没有一个城市可以解决所有环境问题。


    回顾能源历史,新石器时代的革命和能源技术使得能源的获取从狩猎和采集转变为农业;直到工业革命之前,社会才从生物质和有生命力的能源转向风能和水能作为化石燃料的供应;工业革命则标志着所谓一次能源供应顺序变化趋势的开始,即从煤炭到石油再到天然气和核能,其能量密度越来越高。每次能源变化,都会带来经济活动的重组和新的环境后果。通过对亚洲城市环境变迁的观察可以看出,从传统到工业,再到现代环境挑战,其变化速度明显快于过往的欧美国家,此外,在较低的收入水平的现状下,其环境挑战会以重叠或同时发生的方式出现。最近的研究表明,社会经历从传统燃料消耗到电力和其他现代燃料的使用几乎不存在所谓定期且一致的路径。


    城市环境变迁的驱动因素


    影响城市环境变迁的因素是什么?除了经济收入外,气候、资源与健康等也是迫使能源转型的潜在因素。“驱动因素”可以包括导致环境变化的任何自然因素或人为因素。在城市环境历史中,我们可以看到不同驱动因素对发达国家城市内部转型的影响。


    例如,在19世纪中期的华盛顿,人们随意倾倒工业和生活垃圾,废物未经处理便直接排入临近的河流、湖泊等水域,造成堵塞和污染,牲畜在街上肆意乱窜,对人类健康也造成了威胁。鉴于这些驱动因素,政府开始修建供排水系统、并对垃圾和废弃物进行收集和处理。覆盖全市范围的自来水管道取代了井水、泉水等本地水源,人们的用水变得更加洁净便捷。同时,排水系统也使得下水管道和冲水厕所取代了粪池。工程师们根据各个城市不同的情况,设计了不同的地下排水系统。其中最为著名的是工程师乔治·E.韦林的“韦林系统”。这是美国第一个将雨水径流与污水相分离,使其分别进入不同排水管道的下水系统,这样的设计有助于污水的定期排放,从而减少了流行病的发生。这些转变开启了环境变化的新时代,并促进了美国城市的发展,最终引发了工业,经济,社会和政治的全方位变革。


    时间与空间的影响


    什么是所谓空间和时间的影响?有大量文献表明,当代的发展环境与过去有很大不同,在过去的30至40年中,全球化对人类与环境的关系产生了特别强烈的时空影响:


    与时间有关的影响是人类社会经济活动的速度和效率不断变化的结果,通过将地点紧密联系在一起在全球范围内创造出城市动态,迫使城市地区趋同,为具有不同社会,文化和政治历史以及经济水平的城市之间创造了相似的条件;


    与空间有关的影响使越来越多的现象不均匀地分布在空间节点上(即城市内部和城市之间),并在全球范围内形成了城市动态,迫使城市地区之间产生差异,不同的现象日益集中在城市。


    时间和空间之间有四种相互关联方式:时间/空间收敛,-分离、-压缩和-伸缩:


    时间/空间收敛是指地点之间距离的减小。随着交通的快速发展,旅行时间减少,这个概念通常表示为“世界越来越小”;


    时间/空间脱节是指社会系统和关系跨越时空的延伸。人们以两种方式进行交互:面对面以及通过运输和通信技术进行远程交互。现代社会人可以与传统的社会关系“脱节”,因而第二种远程交互方式越来越重要,人们没有必要在某个特定的位置上成为重要的社会角色,因为这些关系已经扩展到了整个空间;


    时间/空间压缩指的是“通过时间消灭空间”,这是资本主义动力的核心。这解释了为什么社会关系和发展模式在空间上得以延伸并最终改变了开发环境。“时间是金钱”,诸多技术和策略促进了时间/空间的压缩,通过各种方法来加速“资本流通”,从而减少“资本周转时间”,将投资及时转化为利润,但与此同时也对阶级权力与社会文化生活之间的平衡造成了迷惑和破坏;


    时间/空间伸缩描述了与发展相关的转变模式,例如现在发展中国家的环境转变相较发达国家发生的更早(在较低的收入水平即可发生)且变化更快(从时间维度来看),并会同时出现一系列问题和挑战。此外,还有许多不同的直接和间接影响,包括全球经济,人口和体制的变化以及当地土地使用和政策的影响,这些因素助长了这些趋势的产生。


    包括我国在内的一些国家在很短时间内完成了英美19世纪末至20世纪初的发展历程,但值得注意的是,发展中国家在收入水平较低时的快速发展,会增加各种条件和挑战,并会使先前发达国家已经历的顺序发展模式分层化,因而其发展现状变得更加复杂并令人感到困惑。尽管这些变化具有多样性,复杂性和迅速性,但从许多方面衡量,当今发展中国家与与发达国家过去所经历的条件相比,会具有更高效且对环境危害更小的优势,例如在能源消耗和温室气体排放方面,快速发展的经济体对环境的危害要小得多。


    比较:美国和快速发展的亚太经济体


    城市化趋势比较


    在20世纪上半叶,世界经历了大规模的迅速城市化,整个欧洲的人口从3亿增至4亿(年平均增长率为0.7%),而美国的人口则从9千万增至1.7亿(年平均增长率为1.2%)。将这些人口规模与亚太地区的人口规模进行比较,中国处于领先地位(约14亿),其次是印度尼西亚、菲律宾、越南、和泰国。这些经济体的人口在1970年至2000年之间以每年超过1.4%的速度增长。城市人口的膨胀导致大型城市的崛起。以1980年为例,在中国大约有42个城市人口过百万,而到2005年则有95个城市。放眼亚太地区,1980年大约有67个城市过百万,到2005年则有131个,其中有6个城市超过千万。


    城市化和城市中心的规模是解释西方经验与发展中国家经验之间差异的重要考虑因素,除此之外还有城市化的时间和速度。


    从时间角度来看,与过去相比,现在许多地区都在经济收入水平较低的时候实现了城市化,即在任何特定的人均GDP水平上,亚太地区内城市化水平要高于美国。


    从速度角度来看,下图中比较了美国和一些亚太国家在类似经济发展水平下的城市化率(城市化水平随时间的增长百分比),可以看到,该地区除泰国外的经济体其城市化率均高于美国。


    图:相似经济发展水平下美国与亚太地区城市化率的比较


    此外,1895年至2000年间,美国的城市化水平提高了40%,同样的比例提升日本用了60年,而韩国仅用了50年。


    能源转型的比较


    通过对城市化、能源供应、消费和收入趋势之间的分析比较发现,发展中国家不仅仅是上文提到的城市化进程更快,还呈现出了更快的能源载体使用和消费趋势。此外,当在类似的收入范围内比较能源消耗随时间的变化时,大多数国家的增长速度要快于美国,且没有美国所经历的线性和顺序性转变。总的来看,发展中经济体的财富增值和城市化发展以及能源供应和消费方式与美国相比都更为有效,从而降低了对全球环境的影响,具体表现为以下几点:


    ·更早


    在原油和汽油方面,亚洲十个国家中的七个国家供应水平很高,但收入水平低于美国。天然气略微不同,该地区九个经济体中有五个经济体的供给水平很高,其收入低于美国。对于水力发电而言,六个经济体中有两个经济体的收入水平低于美国。而核能和现代可再生能源供应领域,大多数使用这些技术的经济体的收入水平远低于美国。例如,韩国核电的兴起时候的人均GDP约为4000美元,而该技术在美国出现时,人均GDP为14300美元。越南以人均GDP2300美元的价格开展了现代可再生能源的部署,而美国在这一领域兴起时的人均GDP约为18500美元,只有新加坡以20000美元高于美国。


    在能源消耗方面,十个经济体中除新加坡和中国香港外,在相似电力消费水平下,其收入水平均低于美国。此外,与美国相比,中国,泰国,马来西亚,印度尼西亚,越南和菲律宾的电力消耗水平较低。


    图:人均用电量与GDP和城市化的比较 (注:HONGKONG中国香港)


    ·更快


    就人均GDP相近的总供应量随时间的变化而言,亚太十个经济体中有八个的变化速度快于美国。从最终消费总量变化的比较来看,所有六个比较都使亚太地区经济体的增长快于美国。


    在能源供应增长较快的国家中,汽油,石油和天然气的增长也超过了美国的增长速度。就煤炭而言,韩国城市化水平的增长要快于美国。随着时间的推移,在相似的人均GDP范围内,亚太经济体工业和交通运输部门的能源消耗变化通常快于美国。就工业部门消费的变化速度而言,只有中国香港和日本的增长速度低于美国。韩国,泰国,马来西亚和日本商业部门的能源消耗增长速度快于美国。


    ·同时进行


    通过比较转换时间可以看到,美国从一种能源形式向另一种能源形式过渡的顺序模式在其他经济体中并未发生。也就是说,对于所研究的经济体,没有一个明显的模式与美国所经历的排序类似。例如,印度尼西亚尚未经历过生物质向煤炭的过渡,但已经经历了生物质向石油和天然气的过渡。当确实发生了转型时,它们的收入和城市化水平通常低于美国。


    ·更高效


    比较收入和城市化水平相近的各个部门的能源总消耗,以及单位能源输入的工业产出的测算差异可以看到,大多数经济体都比美国更高效。例如,类似的城市化水平之下,韩国平均消耗24.1吨石油当量能源,而美国人平均消耗446.1吨。在任何可比的经济增长水平下,发展中国家的工业使用的能源消耗均低于美国。


    ·具有较低的全球环境影响


    美国的人均碳排放量都比任何其他经济体或一组经济体高。虽然新加坡也紧随其后,但其碳排放水平低于美国。


    结论


    长期能源政策将为地区的经济提供良好的服务。鉴于缺乏明确的转型趋势以及供求关系的迅速增长,各国应考虑以何种方式(包括能源的多样性)最有效地实现快速的城市化和经济增长。也就是说,尽管与美国相比,所有这些经济体都实现了更高的效率,但城市化和区域内人口众多的能源需求规模仍然威胁着本地,区域和全球环境。此外,在后高峰时期,许多经济体对液态化石燃料的依赖是不可持续的。根据研究结果,可能要特别注意运输和工业领域,正是这些部门的汽油和机油消耗量增长最快。

    浏览量 97 收起
  • 浅析垃圾填埋场渗滤液处理工艺

    在对于垃圾进行处理的过程中,较为常用的方式包括焚烧、填埋等等。因为填埋的方式有利于管理和运输,并且通过这种方式对于垃圾进行处理需要...快速预览

    浅析垃圾填埋场渗滤液处理工艺

    填埋场渗滤液光催化氧化渗滤液污染物环保

    中国西部科技 | 2月前

    在对于垃圾进行处理的过程中,较为常用的方式包括焚烧、填埋等等。因为填埋的方式有利于管理和运输,并且通过这种方式对于垃圾进行处理需要的费用也相对较低,因此填埋方式已经成为了当前垃圾处理的主要方式之一。但是在对垃圾进行填埋的过程中,会产生渗滤液,渗滤液属于浓度较高的有机液体,会对填埋场地下的土壤和周边的环境造成较为严重的污染,并且具有相当长的污染持续时间。因此,对于垃圾填埋场渗滤液进行处理已经成为城市垃圾处理过程中急需解决的问题,本文主要对渗滤液的处理工艺进行探讨。


    1.垃圾填埋场渗滤液是如何出现的?


    在垃圾进行填埋后,由于微生物的作用,使得垃圾当中的有机物经过厌氧和好氧等反应方式而进行了降解过程。垃圾在降解的过程中产生了低分子以及可溶性的有机物,这些有机物进入到渗滤液中后增加了其中的氨氮含量。同时,垃圾在发生降解时所产生的二氧化碳使得该渗滤液呈现出酸性,从而对于垃圾中的碳酸盐进行了进一步的破坏,使得其中的金融产生了溶解反应。因为对于渗滤液造成影响的水质成分相对较多,所以在渗滤液中的污染浓度和污染种类也就比较多样化,因此,应对于渗滤液的实际情况来采取相应的处理工艺。


    2.垃圾填埋场渗滤液的处理方式分析


    2.1生物处理法


    对于垃圾填埋场渗滤液通过生物的方式来进行处理,主要是指利用微生物的新陈代谢过程以及其所具有的吸附性来对于渗滤液进行处理,具体可以分为厌氧的处理方法和好氧的处理方法等。渗滤液中污染物的成分变化很大,COD最大可达70000mg/L,BOD也可达到38000mg/L,而氨氮的质量浓度可达1700mg/L,甚至更高,重金属中则以Fe,Pb等的浓度最高。渗滤液中高浓度的氨氮会对微生物的活性有强烈的抑制作用,因此通过对渗滤液的预处理,去除一部分氨氮,对后续生物处理的顺利进行具有重要意义。


    目前,关于渗滤液预处理的研究有用空气自由吹脱和加石灰吹脱预处理方法,效果良好,此外还有化学沉淀和吸附的方法去除氨氮,都取得了不同程度的去除效果。北方地区垃圾成分以无机物为主,垃圾自身含水率较低,渗滤液的产生主要来自于降水,渗滤液的产量及浓度受季节变化影响较大。常用的方法是设置渗滤液调节池,雨季时加大处理量,旱季时通过自然蒸发及渗滤液回灌等措施减少处理量,节省能耗。


    由于渗滤液主要来自于降雨,因此其有机物浓度较低。好氧处理最普遍的方法包括延时曝气、曝气稳定塘等,这些方法对降低垃圾渗滤液中的BOD5、COD和氨氮都取得一定的效果,还可以去处另一些污染物如铁、锰等金属离子。好氧生物处理工艺较为成熟。目前,主要的厌氧生物处理工艺有曝气稳定塘、传统活性污泥法和生物膜法等。厌氧法包括厌氧污泥床、厌氧式生物滤池、混合反应器及厌氧塘等,它具有能耗少、操作简单、投资及运行费用低等优点。利用间歇式厌氧反应器将原液中83%的COD转化成甲烷气体;使用间歇和连续上流式厌氧污泥床处理垃圾渗滤液,使反应器有机负荷率在0.6~19.7g(Lod)的条件下操作,间歇上流式厌氧污泥床去除COD的效率在71%~92%之间,对于连续上流式厌氧污泥床反应器,COD去除效率保持在77%~91%范围内。相对于其他处理工艺来说,通过生物的方法来进行渗滤液处理不但操作起来较为简单,同时所需要的费用也相对较低,所有有着十分广阔的使用前景。


    但是对于某些降解难度高以及毒性较高的渗滤液污染物,那么生物处理法的作用就会十分有限,这时就需要应用物理化学处理法。


    2.2物理化学处理法


    物理化学处理法具体包括沉淀、吸附、光催化氧化以及膜过滤等方式。下面将对这些工艺进行具体的分析和探讨。


    首先是光催化氧化工艺,这种工艺技术是近些年来刚刚出现的一种技术,其特点在于能耗较低且易于操作,误会造成二次污染。光催化氧化工作对于某些特殊污染物进行处理时具有较大的优势,但是从目前来看,我国对于这种方法的研究仍然处于初始阶段。


    其次是膜处理工艺,该工艺实际上就是利用膜来将渗滤液中的微粒和溶质进行分开。膜处理工艺也分为超滤、反渗透以及微孔过滤这几种方式。通常对于一些降解难度较大的渗滤液且其中具有较高浓度的氨氮,可以使用膜处理工艺技术来进行处理,其中包含了反渗透设备和膜生物反应设备,对于其中的氮和COD去除率能够达到百分之九十以上,而处理成本也更低,唯一的问题在于在处理后会存在膜污垢,容易对于膜孔造成堵塞的情况。另外,膜过滤技术的价格也更加昂贵,所以目前这种技术的使用推广率不高。


    第三是沉淀法,这里所说的沉淀法包括了混凝技术,这种处理工艺通常用在对于渗滤液的预处理上,具有非常明显的效果,但是该工艺较为容易受到PH值的影响。另外,混凝技术有时也被用来对于膜孔堵塞进行处理。


    最后是回灌工艺技术,所谓回灌处理工艺就是在收集渗滤液后,在进入到垃圾填埋场当中,通过蒸发过程来降低渗滤液含量,并利用填埋层和垃圾的化学作用以及生物作用来对于渗滤液中的污染物进行截流,通过对于渗滤液的循环过程来实现对渗滤液中废物的降解,从而增强垃圾填埋场的稳定程度,提升垃圾填埋场对于有机物的净化功能。垃圾填埋场中的水、COD负荷以及土壤所具有的结构都会对垃圾填埋场的净化功能早晨给影响。虽然渗滤液经过多次循环能够将其中的有机成分进行减少,但是重金属和氨等物质仍然有着较高的含量,所以需要在回灌处理结束后,还需要对这些成分利用其他工艺进行处理。目前来看,对于回灌处理工艺技术仍然需要进行进一步的完善和优化。


    结束语:因为在垃圾填埋场当中,无论是水质还是水量都会发生较大的变化,并且有着较高的毒性和有机物浓度,所以到目前为止仍然没有哪种处理工艺能够切实有效的对于渗滤液进行处理,而是需要综合利用多种处理工艺来对渗滤液进行处理。利用生物处理工艺来对于垃圾填埋场的渗滤液进行处理,因为考虑到渗滤液的水质特点,应该对其进行相应的限制。因此,从目前的情况来看,物理化学处理工艺才是当前重点需要去研究和推广的垃圾填埋场渗滤液处理工艺。

    浏览量 111 收起
  • 污水处理技术之聚磷菌的除磷机理及影响因素

    污水生物除磷的原理就是人为创造生物超量除磷过程,实现可控的除磷效果。整个过程必须通过创造厌氧与好氧交替环节利用聚磷菌的作用来实现生...快速预览

    污水处理技术之聚磷菌的除磷机理及影响因素

    聚磷菌生物除磷除磷工艺污水处理环保

    环保工程师 | 2月前

    污水生物除磷的原理就是人为创造生物超量除磷过程,实现可控的除磷效果。整个过程必须通过创造厌氧与好氧交替环节利用聚磷菌的作用来实现生物除磷过程。


    一、聚磷菌除磷机理


    聚磷菌也叫做摄磷菌、除磷菌,是传统活性污泥工艺中一类特殊的细菌,在好氧状态下能超量地将污水中的磷吸入体内,使体内的含磷量超过一般细菌体内的含磷量的数倍,这类细菌被广泛地用于生物除磷。


    1)厌氧条件下释磷


    在没有溶解氧或硝态氮存在的条件下,兼性细菌通过发酵作用将可溶性BOD5转化为低分子挥发性有机酸VFA。聚磷菌吸收这些发酵产物或来自原污水的VFA,并将其运送到细胞内,同化成胞内碳能源储存物质PHB,所需的能力来源于聚磷的水解以及细胞内糖的酵解,并导致磷酸盐的释放。


    微信图片_20191101094129.jpg


    2)好氧条件下摄磷


    好氧条件下,聚磷菌的活力得到恢复,并以聚磷的形式存储超过生长所需的磷量,通过PHB的氧化代谢产生能量,用于磷的吸收和聚磷的合成,能量以聚磷酸高能键的形式捕集存储,磷酸盐从水中被去除。


    3)富磷污泥的排放


    产生的富磷污泥通过剩余污泥的形式排放,从而将磷去除。从能量角度来看,聚磷菌在无氧条件下释放磷获取能量以吸收废水中溶解性有机物,在好氧状态下降解吸收溶解性有机物获取能量以吸收磷。


    除磷的关键是厌氧区的设置,聚磷菌能在短暂的厌氧条件下,由于非聚磷菌吸收低分子基质并快速同化和储存这些发酵产物,即厌氧区为聚磷菌提供了竞争优势。


    这样一来,能吸收大量磷的聚磷菌就能在处理系统中得到选择性增殖,并可通过排除高含磷量的剩余污泥达到除磷的目的。这种选择性增殖的另一好处是抑制了丝状菌的增殖,避免了产生沉淀性能较差的污泥的可能,因此厌氧/好氧生物除磷工艺一般不会出现污泥膨胀。


    二、聚磷菌代谢的影响因素


    生物除磷中通过聚磷菌在厌氧状态下释放磷,在好氧状态下过量地摄取磷。经过排放富磷剩余污泥而除磷,其影响聚磷菌代谢的影响因素包括:温度、pH值、厌氧池DO、厌氧池硝态氮、泥龄、CP比、RBCOD含量、糖原、HRT等。


    1、温度


    温度对除磷效果的影响不如对生物脱氮过程的影响那么明显,在一定温度范围内,温度变化不是十分大时,生物除磷都能成功运行。试验表明,生物除磷的温度宜大于10℃,因为聚磷菌在低温时生长速度会减慢。


    2、pH值


    在pH在6.5一8.0时,聚磷微生物的含磷量和吸磷率保持稳定,当pH值低于6.5时,吸磷率急剧下降。当pH值突然降低,无论在好氧区还是厌氧区磷的浓度都急剧上升,pH降低的幅度越大释放量越大,这说明pH降低引起的磷释放不是聚磷菌本身对pH变化的生理生化反应,而是一种纯化学的“酸溶”效应,而且pH下降引起的厌氧释放量越大,则好氧吸磷能力越低,这说明pH下降引起的释放是破坏性的,无效的。pH升高时则出现磷的轻微吸收。

    浏览量 124 收起
  • 火电厂脱硝技术与脱硫脱硝一体化发展研究

    首先对我国火电厂脱硝技术的应用现状进行简要分析,在此基础上对火电厂烟气脱硫脱硝一体化技术的发展进行论述。期望通过本文的研究能够对火电厂...快速预览

    火电厂脱硝技术与脱硫脱硝一体化发展研究

    脱硝技术脱硫脱硝一体化脱硫脱硝技术环保

    《电力设备》 | 2月前

    摘要:首先对我国火电厂脱硝技术的应用现状进行简要分析,在此基础上对火电厂烟气脱硫脱硝一体化技术的发展进行论述。期望通过本文的研究能够对火电厂烟气脱硫脱硝技术水平的提升有所帮助。


    关键词:火电厂;脱硝技术;脱硫脱硝一体化


    作者:付强


    当前世界上广泛应用的不可再生资源以及火电厂主要应用的焦点能源就是煤炭。我国煤炭的使用量是非常巨大的,因此许多的氮氧化合物以及硫氧化合物在煤炭燃烧过程中产生,从而对大气造成污染,所以对火电厂脱硝技术与应用以及脱硫脱硝一体化的发展趋势进行研究是非常有必要的。


    1火电厂脱硝技术的应用现状


    国内火电厂常用的脱硝方法有SCR(选择性催化还原法)、SNCR(非选择性催化还原法)以及两种方法相联合,SCR技术在脱硝方面具有二次污染小、净化效率高、技术成熟等特点,脱硝率能够达到80-90%左右,而SNCR技术,在脱硝方面不需要使用催化剂,运行成本低,但却会造成二次污染,并且脱硝率也不是很高,一般只能达到30-50%左右。SCR的技术原理如下:在火力发电机组的省煤器与预热器两个设备之间,对SCR反应器进行布设,当机组运行后,烟气会以垂直的方式直接进入到反应器当中,经催化剂作用后,会将有害的NOx还原为无害的水和氮气。在这个反应过程中,需要使温度保持在300-400℃之间;SNCR的技术原理是当锅炉内的烟气温度达到900-1000℃左右时,向其中喷入还原剂,如尿素、氨等,以此来将有害的NOx还原为无害的水和氮气。SCR与SNCR联合是将两者的技术优势合并到一起,弥补各自的不足,从而提高脱硝率。由于两种技术联合后,工艺系统会变得较为复杂。故此,该方法通常被用于对脱硝率要求比较高的场合。


    火电厂的烟气脱硝技术实质上就是一个对NOx进行消除的过程,由此能够防止火电厂生产对环境造成的污染和破坏。目前,国外很多发达国家的火电厂在生产中都对脱硝技术进行了应用,如美国的一些大型火电厂通过该技术对NOx进行控制,并取得显著的效果;又如德国,采用一级脱氮技术,其在处理中,采用的是低碳氧化物燃烧器,对有毒有害气体的排放进行控制。在我国,由于受到一些因素的制约,使得脱销技术成为火电厂生产过程中的难点问题,如操作难度大、运行成本高等等,由此导致我国的火电厂在脱硝技术方面,要远远落后于西方的发达国家。在最近几年里,随着我国各方面技术的发展和完善,使得脱硝技术获得长足进步,从而满足了火电厂的生产需要。


    2脱硫脱硝技术的应用


    2.1脱硫技术的应用


    不管是哪一项脱硫措施,均会出现一些不足之处,例如:火电厂吸收塔的烟气温度过高、雾化形式不完善、喷嘴较少等。而烟气的温度与脱硫效率间存在反比关系,即温度越高,脱硫效率越差。因此,火电厂在进行脱硫工作期间,如何控制并减低吸收塔的烟气温度就成为十分重要的事情。可以从除尘器及雾化设备上入手,进而降低温度。另外需要注意的是,在进行脱硫操作时,应确保除尘效果良好,唯有如此,才能够高效降低烟气温度。


    目前,火电厂脱硫工作还可以通过增加喷嘴数量的方式进行控制,增多喷嘴数量,减小雾化面积等都能够良好地控制烟气温度,减少死角,从而提高脱硫效率。在对新建机组和现有机组的烟气脱硫建设项目的脱硫工艺选择中,考虑到今后一段时间二氧化硫排放标准可能发生的修订,从而有更为严格的排放和浓度控制要求,我们必须对今后5~10年的排放标准可能的变化做出预测,并在烟气脱硫系统的工艺中做出相应考虑,使得所采用的脱硫工艺不但能满足当前排放标准的要求,同时还应增加有限的投资来提高脱硫效率,以满足今后新的排放标准可能变化的能力。


    2.2脱硝技术的应用


    (1)国外对脱硝技术的应用。现在很多发达国家对于脱硝技术都有着较为广泛的应用。美国将这项技术更是作为现代火电厂中对氮氧化物进行控制的一项重要技术。而德国在20世纪时就开始了对一级脱氮技术的应用。通过开发和研制相应的技术,将氮氧化物中的有毒气体等进行了有效减少和降低。在二级脱氮技术中的烟气脱氮装置运用上,通过对低碳氧化物燃烧器的应用控制有毒气体的排放。


    (2)国内脱硝技术。由于一直以来脱硝技术都存在成本高、难度大等问题,因此我国目前脱硝技术较国外存在很大差距。随着近几年经济的不断发展,人们对环境的关注度不断提高,脱硝技术也得到了发展。所以我国这项技术还有着很大的发展空间。目前火电厂脱硝技术常用的方式有:半干法脱硝与湿法脱硝两种。


    3脱硫脱硝一体化的发展趋势


    二氧化硫和氮氧化物的排放量是通过锅炉燃烧燃料的过程中同时对其进行控制的,如果两套设备进行同时安装,不仅会使占地面积增加,同时还大大增加了火电厂的投资成本,对其经济效益造成一定的影响。但是对脱硫脱硝一体化技术进行使用不但可以使空间的利用率大大增加,同时还可以将投资方的投资成本进行降低,将脱硫脱硝的工作效率大大提高,从而使其经济收益也大大增加。其中联合脱硫脱硝技术方法和同时脱硫脱硝技术方法是主要的脱硫脱硫一体化技术的内容。


    3.1联合脱硫脱硝工艺方法和利用


    充分融合脱硫和脱硝两种工艺的技术手段就是联合脱硫脱硝的工艺方式。根据相关数据可知,60多种是联合脱硫脱硝技术方法的数量:①SNOX技术方法。商业化设备是这项技术主要应用的设备,设备在工作期间不会被化学反应原理所影响,因此所有型号的锅炉都可以使用这项技术。由于较高的脱硫率和脱硝率是SNOX技术所具备的,因此氨气是其主要的化学试剂,在整个工艺过程中具有较低的维修护理费,可信性非常高,但是其具有较高的成本和耗能,浓硫酸的运输也存在一定难度,因此只有较高排放标准的条件适合这项技术;②烟气脱硫脱硝一体化的工艺。利用氨气和相应的化学反应将氮氧化合物转化成氮气和水,烟气转化成石膏的过程主要是利用脱硫和石灰的化学反应完成的,可以二次使用分离处理提取的粉煤灰,这种方法具有较高的效率,在很大程度上对二次污染的问题进行了很好的解决;③活性炭脱硫脱硝的一体化工艺。活性炭脱硫脱硝一体化工艺与吸附塔的活性炭液化床吸附具有相似的原理,而且由于可以循环利用活性炭,因此其具有很高的工作效率和广阔的发展前景。


    3.2同时脱硫脱硝工艺方法和利用


    在一个实际的过程中将两步的反应共同完成这就是同时脱硫脱硝的工艺方法,其大大提高了工作效率,干法和湿法同时脱硫脱硝工艺是其主要的两种方式。


    ⑴干法同时脱硫脱硝工艺:①电子束照射法。喷雾干燥是当前我国广泛推广的方法之一,这种方法不但可以同时使脱硫脱硝工作完成,而且可以为高效率的工作提供保障,使污染环境的化学产物不会产生,同时可以使二次利用的化肥产品得以形成,还具有非常简单的操作;②活性炭脱硫脱氮法,主要由日本研发出这种方法,其主要是回收利用硫元素以及进行吸收。这种方法在相同的工作环境中,其转化率会非常高;③脉冲电晕法,这种方法也属于离子法,其对活化电子的释放主要是通过高压脉冲电源进行的,从而对烟气气体分子的相关化学反应进行阻止,其与电子束照射法基本上具有相同的脱硫脱硝的效率,因此当前最需要解决的就是两者的耗能问题。


    ⑵湿法同时脱硫脱硝工艺:①氯酸氧化的方法。吸附塔和碱性吸附塔两方面是这种方法主要包括的内容。如果脱氮工作的转化率高于95%,其在工作过程中还可以吸附气体中的有毒元素,当前还在不断研究和优化这种技术方法;②湿法配合吸收方法。通过对湿法洗涤体系的联合脱硫方法进行使用,可以对超过60%的氮氧化合物和超过90%的二氧化硫进行清除。当前也在不断的研究和优化这种方法,相关研究的瓶颈问题就是相关化合物的损失和再生。


    结束语


    火电厂的脱硫脱硝问题一直以来都是备受关注。有效的提高脱硫脱硝的效率,并将两者结合,形成脱硫脱硝一体化技术,是目前的首要任务。这不光是对人们健康的负责,更是对自然环境的负责。


    参考文献


    [1]戴迎根.关于火电厂脱硫节能降耗技术的改进策略[J].山东工业技术,2018,23(10):168.

    [2]程超,赵兴杰,马旭旭.火电厂脱硫技术探讨及脱硫脱硝一体化发展趋势[J].山东工业技术,2018,14(09):179.

    浏览量 124 收起
  • 上海济兴半干法厌氧发酵工艺真正实现变废为宝

    秸秆和粪便是农业生产过程中产生的副产品,在过去,农民把秸秆作为家用燃料或者牲畜饲料,粪便作为农家肥助力使用。随着经济的发展和人们生...快速预览

    上海济兴半干法厌氧发酵工艺真正实现变废为宝

    上海济兴厌氧发酵秸秆综合利用

    E20环境产业俱乐部 | 2月前

    秸秆和粪便是农业生产过程中产生的副产品,在过去,农民把秸秆作为家用燃料或者牲畜饲料,粪便作为农家肥助力使用。随着经济的发展和人们生活水平的提高,我国的种植业和养殖业已从过去的小农经济转向规模化、集约化,越来越多的清洁燃料代替秸秆作为家用燃料,人工饲料代替秸秆作为牲畜饲料,化肥代替粪便作为农作物的肥料,绝大多数的秸秆和粪便被随意丢弃或排放到环境中,对生态环境造成了严重的影响。


    上海济兴半干法厌氧发酵工艺真正实现变废为宝


    在安徽临泉,因为一个规模化生物天然气工程项目的建成,一切都变得不一样。


    上海济兴半干法厌氧发酵工艺真正实现变废为宝


    这个位于临泉县庐阳现代产业园内的项目采用了半干法发酵工艺,有6个容积为5000m3的大型厌氧发酵罐,同时建设了进料车间、脱水堆肥车间、净化压缩单元、锅炉房、动力站、充装站、综合楼等主辅工程。项目采用中温发酵(36——38℃),热量来自于沼气锅炉,发酵罐内原料停留期为25天,设计产气量36000 m3/d,容积产气率1.2 m3/(m3.d)。年处理黄贮秸秆5.5万吨,牛粪2.2万吨,猪粪3.2万吨,年产净化沼气6500吨,能生产720万Nm3/年压缩天然气(CNG)用作车用,而沼渣可以直接制成肥料,真正实现了“变废为宝”,对改善农村生态环境和能源结构、提高农民生活水平、实现农业可持续发展具有重大的意义。


    上海济兴半干法厌氧发酵工艺真正实现变废为宝


    项目的核心是半干法发酵工艺。该工艺与传统的湿法厌氧发酵工艺特点对比如下:


    上海济兴半干法厌氧发酵工艺真正实现变废为宝


    相对传统的湿法厌氧发酵工艺,半干法厌氧发酵工艺具有以下优势:


    1)高效性


    半干法发酵罐的运行浓度高于湿法发酵罐,同样的发酵罐容积,能处理更多原料,同时产生更多沼气。


    2)经济性


    相比于湿法厌氧发酵,半干法工艺所需的热量和加水量低,特别适合北方高寒地区,同时清罐周期长,大大降低了人力和物力的消耗,有很好的经济性。


    上海济兴半干法厌氧发酵工艺真正实现变废为宝


    在临泉国能规模化生物天然气工程项目中,上海济兴提供了核心工艺半干法厌氧发酵的完整解决方案,涵盖了项目的规划、工艺设计、设备采购、安装建设以及调试,高质量的完成了任务。上海济兴以先进的技术、优质的服务、精细的管理得到了业主高度评价。

    浏览量 92 收起
智库 科普